Late Follow-Up from the PARTNER Aortic Valve-in-Valve Registry

John G. Webb, MD Michael J. Mack, MD on behalf of The PARTNER II Trial Investigators

TCT 2018 | San Diego, CA | September 23, 2018

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Steering Committee
- SAB (Equity)

• Honoraria

Company

Edwards Lifesciences

Edwards Lifesciences

Edwards Lifesciences

Background

- Valve-in-Valve TAVR is a viable alternative for patients with failing surgical bioprosthetic valves
- Although early outcomes have been favorable, limited data is available on *longer-term* clinical outcomes, valve function, and durability

Methods Study Design

- Prospective, multicenter registry
- Inclusion Criteria:
 - Symptomatic severe stenosis or regurgitation of a surgical aortic bioprosthetic valve
 - High-risk for re-operation (estimated surgical mortality or major morbidity \geq 50%)
 - Suitable for 23mm or 26mm SAPIEN XT THV

• Key Exclusion criteria:

- Surgical valve labeled size < 21mm
- Prosthetic valve in another position
- Angiogram, CT, Echo images and clinical data were screened on a weekly web conference call

The PARTNER II Trial: Aortic Valve-in-Valve Registry

Webb JG et al. JACC 2017;69:2253-62

Methods Statistical Analysis

Analysis Population

- Nested Registry (NR3, N=96) and Continued Access Registry (CANR, N=269)
- Valve implant population (patients in whom valve implant was completed)

Clinical Outcomes

- Cumulative incidence reported as Kaplan-Meier event rates
- Associations assessed by Cox proportional hazards regression models
- Comparisons performed by the log-rank test

Longitudinal Outcomes (echo and functional characteristics)

 Within-subject comparisons modeled over time by linear mixed effects model to adjust for patient variability (missing data and survival bias)

Baseline Characteristics

Characteristic (%)	All Patients N=365	Initial Registry (NR3) N=96	Continued Access (CANR) N=269	p-value
Age, years	78.9 ± 10.2	80.1 ± 9.3	78.5 ± 10.5	0.18
Male	64.1	55.2	67.3	0.03
STS Score, %	9.1 ± 4.7	9.9 ± 5.1	8.8 ± 4.6	0.06
NYHA Class 3/4	90.4	95.8	88.5	0.04
Atrial Fibrillation	46.8	50.0	45.7	0.47
CAD	75.6	76.0	75.5	0.91
COPD	30.4	29.2	30.9	0.76
Renal Insufficiency (SCr ≥2 mg/dL)	12.3	14.6	11.5	0.43

Data presented as % or mean ± SD; CAD = coronary artery disease, COPD = chronic obstructive pulmonary disease, NYHA

= New York Heart Association, SCr = serum creatinine, STS = Society of Thoracic Surgeons

Valve and Procedural Characteristics

Surgical Bioprosthesis Age	%
< 5 years	6.8
5-10 years	27.2
> 10 years	66.0
Mode of Degeneration	
Stenosis	55.0
Regurgitation	23.7
Mixed	21.2
Surgical Valve Type	
Bioprosthetic Stented	93.1
Other	6.9

Labeled Surgical Valve Size	%
21mm	26.7
22-25mm	12.6
>25mm	59.2
Implanted THV Size	
23mm	69.0
26mm	31.0
Access	
Transfemoral	75.8
Transapical	24.2

Results Clinical Outcomes at 3 Years

	Events at 3 years* N=365
Composite Endpoint: All-Cause Death or Any Stroke	36.2 (127)
All-Cause Death	33.3 (116)
Cardiovascular	20.1 (68)
Non-cardiovascular	16.4 (48)
Any Neurological Event (Stroke or TIA)	7.8 (26)
Stroke	6.2 (21)
TIA	3.0 (9)
New Permanent Pacemaker	7.1 (23)
Repeat Valve Replacement	1.9 (5)

*All events CEC-adjudicated through 1 year and site-reported thereafter, presented as KM % (# events); TIA = transient ischemic attack

Results Mortality and Stroke

Results Repeat Valve Replacement*

*SAVR or ViV TAVR

Results EOA and Mean Gradient

Results Mean Gradient by Failure Mode

Results Aortic Regurgitation

Total AR ≥ Moderate

Paravalvular AR ≥ Moderate

p = 0.006

*LVEF by Simpson's

Results Changes in Function and Quality of Life

<u>NYHA</u>

KCCQ Overall Summary Score

Results HR for Mortality

Surgical Valve Size (Labeled): 21mm vs 22-25mm 21mm vs >25mm 22-25mm vs >25mm Surgical Valve True ID: ≤21mm vs >21mm Failure Mode: Stenosis vs Regurgitation Stenosis vs Mixed Approach: TT vs TF Residual gradient: ≥20 mmHg vs <20 mmHg

THE PARTNE

HR [95% CI]; p-value

1.18 [0.77, 1.78]; p=0.45 1.51 [0.76, 2.99]; p=0.24 1.28 [0.69, 2.43]; p=0.44 1.21 [0.70, 2.10]; p=0.49

1.06 [0.67, 1.70]; p=0.80 0.84 [0.53, 1.32]; p=0.44 1.12 [0.74, 1.70]; p=0.59 1.34 [0.90, 1.99]; p=0.15

Results тне PARTNER II Mortality by surgical valve size (labeled) 21 mm ----- 22-25 mm ____ >25 mm Overall Log-Rank pvalue = 0.4727 Death (%) 36.4% 32.4% 26.0% All-Cause Time (months) Number at risk: 21mm 22-25 mm >25 mm

Results Mortality by post-implant gradient

Conclusions

- The mortality of 33.3% at 3 years reflects multiple comorbidities in this high-risk patient population (mean STS 9.1%).
- In survivors, early improvements in functional status and quality of life indices are maintained through 3-years.
- Valve performance is also sustained through 3 years with rare signs of structural valve deterioration requiring repeat procedures.

Conclusions

 The early improvements associated with ViV TAVR are maintained through 3 years, supporting the value of ViV TAVR as an important alternative therapy in appropriate patients with aortic bioprosthetic valve failure.